
Version: Final Marksheet (19 October 2012)

Candidate:

Marker: 120 0

Checksum: 0000-0000-0120 Total Pupil

1.1 3

1.2

3

1.3

3

1.4

3

1.5

3

1.6

5

1.7

5

1.8

7

1.9

8

2

13

3.1 1

3.2

3

3.3

4

I.T. PRACTICAL EXAMINATION 2012

SELECT * FROM tblWaiters ORDER BY waiterName;

SELECT tableID, tableGuests FROM tblTables WHERE tblGuests = 1 OR tblGuests >= 10; - 2

marks for correct condition, -1 for errors to a max of -2.

SELECT menuDescription FROM tblMenuItems WHERE menuDescription LIKE '*chips*'; - can

give marks for INSTR, penalise 1 mark for only 1 wildcard.

INSERT INTO tblWaiters (waiterName, waiterPhone) VALUES ("Busi", "083 469 9000"); - if

inserted a key value, lose the mark assigned for fields

SELECT menuDescription, (menuSalesPrice / menuCostPrice – 1) * 100 AS MarkUp FROM

tblMenuItems ORDER BY (menuSalesPrice / menuCostPrice - 1) * 100 DESC

Properties: both private, both double, both named appropriately As long as data type can

handle decimals i.e. real NO MARKS FOR PROTECTED, but "carry the error" and don't re-penalise

later for no method calls.

Prog. Lang.

Class header is correct; PROPERTIES: all private, all appropriate data types, all named

correctly; CONSTRUCTOR: method header is correct, assignments are correct; GETTERS: all

getters correct (-1 per error to a max of 2); METHODS: setter is correct; changeQuantity has

correct header, increase; toString has correct header, formatting & fields; If utilise different

protected or public instead of private to make later questions easier, a mark will be lost at beginning

only; don't be too strict on formatting (spaces / tabs etc.); field names must bear relation to what

was asked, not "x" or "y".

Class header is correct with extend

SELECT menuDescription, menuSalesPrice – menuCostPrice AS profit FROM tblMenuItems

WHERE menuCategory = "Drinks";

SELECT menuDescription, SUM(orderQuantity) AS Quantity FROM tblMenuItems INNER JOIN

tblOrders ON tblOrders.orderMenuItemID = tblMenuItems.menuID GROUP BY

menuDescription; left join -1; WHERE joins are acceptable

SELECT waiterName, COUNT(tableID) AS tablesServed, AVG(tableAmountPaid) AS

avgAmountPaid FROM tblWaiters INNER JOIN tblTables ON tblWaiters.waiterID =

tblTables.tableWaiterID GROUP BY waiterName; COUNT(tableID) can be COUNT(*); LEFT JOIN -1;

WHERE joins acceptable

SELECT waiterName, SUM(orderQuantity)*10 AS Prize FROM tblWaiters INNER JOIN (tblTables

INNER JOIN (tblMenuItems INNER JOIN tblOrders ON tblMenuItems.menuID =

tblOrders.orderMenuItemID) ON tblTables.tableID = tblOrders.orderTableID) ON tblWaiters.waiterID

= tblTables.tableWaiterID WHERE menuDescription LIKE "*Giant Burger*" GROUP BY

waiterName; Using ID 2 inner joins (e.g. using 'id=x or id=y') is fine if answer meets what is asked.

Check against supplied output.

Constructor: header is correct (-1 per error to a max of 2), calls parent constructor,

assignments are correct. If super not called -1 mark; if re-declares parent properties (above) then

penalise here: either super-constructor call is irrelevant or not present.

Place candidate's barcoded
sticker here.

This sheet must be stapled to the font of each
candidates' submission.

3.4

4

3.5

3

4.1 1

4.2

4

4.3

10

4.4

7

4.5

8

4.6

5

5.1 1

5.2 1

5.3

3

6.1

10

6.2

2

getOrderAmount method: method header is correct, correct calculation for return maximumLevel

– getQuantity () (-1 per error to a max of 2); if used "int" as property data-type, don't repenalise

here.

Class header is correct

getOrderingList: method header correct, for loop to loop through each element, if-statement to

check object type, type-casting, if-statement to check for order, concatenate correct fields

(getDescription () + ": " + getOrderAmount() + " " + getUnit ()) to return var with a newline (-1 for

errors to a max of 2), return - formatting must be similar to requirements, doesn't have to be

precise.

findStockItem: method header correct, for-loop to iterate through all records, compare to

search string, return found object, return null if none. If method type is int or String, null

cannot be returned: lose 2 marks for header and null return; there are no marks for case-sensitive

testing, so don't penalise if not done.

Print both headings, print stock list, print ordering list - if output was only printed after

update, award these marks for that code; they lose the "repeat output" mark

updateStockLevels: open file for reading and use indefinite loop with correct condition, parse

text, find stock item, some check for “used” and reduce, some check for “bought” and

increase, otherwise set level (check conditions can be in any order and use any working

method), read next line.

 Perform stock take, display info as before - if, in GUI, buttons were provided instead of

sequenced code, award this mark for "interface"; if output is done only once, do not award "display

info as before mark".

Instantiate a StockManager object

Class header correct

mustOrder method: method header is correct, if statement with correct condition (getQuantity ()

< minimumLevel) (-1 per error to a max of 2), return true else, return false. If code added to

decrement methods functionality mark will be deducted. If has no effect on execution of method no

marks deducted; return a boolean condition instead of using "if" is also acceptable: "return getQ <

minLev";

Properties: both are declared private, correct data type for each (StockItem array, int), both

initialised (array of 100, count = 0) No marks for protected or public; penalise here and don't carry

through. "count" mark for declaration, not initialisation.

Constructor: method header correct, open file for reading, indefinite loop, correct looping

condition, parse line on “#”, “if” determines object correctly, correctly create a StockItem

object with parameters, correctly create a StockItemOrder with parameters, increment

counter, read in a new line in the loop In Delphi "open file" means "everything that needs to be

done to read from a file"; note that Java memo has class name typo.

getStockList: method header correct, initialise a temporary variable, appropriate for loop,

concatenate the toString with a newline, return concatenated variable (no mark for "") - If

protected or public used earlier mark deducted earlier do not penelise here if produces desired

output

