
Version: Final Marksheet (19 October 2012)

Candidate:

Marker: 120 0

Checksum: 0000-0000-0120 Total Pupil

1.1 3

1.2

3

1.3

3

1.4

3

1.5

3

1.6

5

1.7

5

1.8

7

1.9

8

2

13

3.1 1

3.2

3

3.3

4

I.T. PRACTICAL EXAMINATION 2012

SELECT * FROM tblWaiters ORDER BY waiterName;

SELECT tableID, tableGuests FROM tblTables WHERE tblGuests = 1 OR tblGuests >= 10; - 2

marks for correct condition, -1 for errors to a max of -2.

SELECT menuDescription FROM tblMenuItems WHERE menuDescription LIKE '*chips*'; - can

give marks for INSTR, penalise 1 mark for only 1 wildcard.

INSERT INTO tblWaiters (waiterName, waiterPhone) VALUES ("Busi", "083 469 9000"); - if

inserted a key value, lose the mark assigned for fields

SELECT menuDescription, (menuSalesPrice / menuCostPrice – 1) * 100 AS MarkUp FROM

tblMenuItems ORDER BY (menuSalesPrice / menuCostPrice - 1) * 100 DESC

Properties: both private, both double, both named appropriately As long as data type can

handle decimals i.e. real NO MARKS FOR PROTECTED, but "carry the error" and don't re-penalise

later for no method calls.

Prog. Lang.

Class header is correct; PROPERTIES: all private, all appropriate data types, all named

correctly; CONSTRUCTOR: method header is correct, assignments are correct; GETTERS: all

getters correct (-1 per error to a max of 2); METHODS: setter is correct; changeQuantity has

correct header, increase; toString has correct header, formatting & fields; If utilise different

protected or public instead of private to make later questions easier, a mark will be lost at beginning

only; don't be too strict on formatting (spaces / tabs etc.); field names must bear relation to what

was asked, not "x" or "y".

Class header is correct with extend

SELECT menuDescription, menuSalesPrice – menuCostPrice AS profit FROM tblMenuItems

WHERE menuCategory = "Drinks";

SELECT menuDescription, SUM(orderQuantity) AS Quantity FROM tblMenuItems INNER JOIN

tblOrders ON tblOrders.orderMenuItemID = tblMenuItems.menuID GROUP BY

menuDescription; left join -1; WHERE joins are acceptable

SELECT waiterName, COUNT(tableID) AS tablesServed, AVG(tableAmountPaid) AS

avgAmountPaid FROM tblWaiters INNER JOIN tblTables ON tblWaiters.waiterID =

tblTables.tableWaiterID GROUP BY waiterName; COUNT(tableID) can be COUNT(*); LEFT JOIN -1;

WHERE joins acceptable

SELECT waiterName, SUM(orderQuantity)*10 AS Prize FROM tblWaiters INNER JOIN (tblTables

INNER JOIN (tblMenuItems INNER JOIN tblOrders ON tblMenuItems.menuID =

tblOrders.orderMenuItemID) ON tblTables.tableID = tblOrders.orderTableID) ON tblWaiters.waiterID

= tblTables.tableWaiterID WHERE menuDescription LIKE "*Giant Burger*" GROUP BY

waiterName; Using ID 2 inner joins (e.g. using 'id=x or id=y') is fine if answer meets what is asked.

Check against supplied output.

Constructor: header is correct (-1 per error to a max of 2), calls parent constructor,

assignments are correct. If super not called -1 mark; if re-declares parent properties (above) then

penalise here: either super-constructor call is irrelevant or not present.

Place candidate's barcoded
sticker here.

This sheet must be stapled to the font of each
candidates' submission.

3.4

4

3.5

3

4.1 1

4.2

4

4.3

10

4.4

7

4.5

8

4.6

5

5.1 1

5.2 1

5.3

3

6.1

10

6.2

2

getOrderAmount method: method header is correct, correct calculation for return maximumLevel

– getQuantity () (-1 per error to a max of 2); if used "int" as property data-type, don't repenalise

here.

Class header is correct

getOrderingList: method header correct, for loop to loop through each element, if-statement to

check object type, type-casting, if-statement to check for order, concatenate correct fields

(getDescription () + ": " + getOrderAmount() + " " + getUnit ()) to return var with a newline (-1 for

errors to a max of 2), return - formatting must be similar to requirements, doesn't have to be

precise.

findStockItem: method header correct, for-loop to iterate through all records, compare to

search string, return found object, return null if none. If method type is int or String, null

cannot be returned: lose 2 marks for header and null return; there are no marks for case-sensitive

testing, so don't penalise if not done.

Print both headings, print stock list, print ordering list - if output was only printed after

update, award these marks for that code; they lose the "repeat output" mark

updateStockLevels: open file for reading and use indefinite loop with correct condition, parse

text, find stock item, some check for “used” and reduce, some check for “bought”  and

increase, otherwise set level (check conditions can be in any order and use any working

method), read next line.

 Perform stock take, display info as before - if, in GUI, buttons were provided instead of

sequenced code, award this mark for "interface"; if output is done only once, do not award "display

info as before mark".

Instantiate a StockManager object

Class header correct

mustOrder method: method header is correct, if statement with correct condition (getQuantity ()

< minimumLevel) (-1 per error to a max of 2), return true else, return false. If code added to

decrement methods functionality mark will be deducted. If has no effect on execution of method no

marks deducted; return a boolean condition instead of using "if" is also acceptable: "return getQ <

minLev";

Properties: both are declared private, correct data type for each (StockItem array, int), both

initialised (array of 100, count = 0)  No marks for protected or public; penalise here and don't carry

through. "count" mark for declaration, not initialisation.

Constructor: method header correct, open file for reading, indefinite loop, correct looping

condition, parse line on “#”, “if” determines object correctly, correctly create a StockItem

object with parameters, correctly create a StockItemOrder with parameters, increment

counter, read in a new line in the loop In Delphi "open file" means "everything that needs to be

done to read from a file"; note that Java memo has class name typo.

getStockList: method header correct, initialise a temporary variable, appropriate for loop,

concatenate the toString with a newline, return concatenated variable (no mark for "") - If

protected or public used earlier mark deducted earlier do not penelise here if produces desired

output

